Density ratios and $(\phi,1)$ rectifiability in $n$-space
نویسندگان
چکیده
منابع مشابه
BEST APPROXIMATION SETS IN -n-NORMED SPACE CORRESPONDING TO INTUITIONISTIC FUZZY n-NORMED LINEAR SPACE
The aim of this paper is to present the new and interesting notionof ascending family of $alpha $−n-norms corresponding to an intuitionistic fuzzy nnormedlinear space. The notion of best aproximation sets in an $alpha $−n-normedspace corresponding to an intuitionistic fuzzy n-normed linear space is alsodefined and several related results are obtained.
متن کاملUniform measures and uniform rectifiability
In this paper it is shown that if μ is an n-dimensional Ahlfors-David regular measure in R which satisfies the so-called weak constant density condition, then μ is uniformly rectifiable. This had already been proved by David and Semmes in the cases n = 1, 2 and d − 1, and it was an open problem for other values of n. The proof of this result relies on the study of the n-uniform measures in R. I...
متن کاملMenger curvature and rectifiability
E3 c(x, y, z)dH(x)dH(y)dH(z) where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to ...
متن کاملSparse rectifiability and compactness in SBV
We introduce a notion of sparse rectifiability, stronger than that of uniform rectifiability. As applications we derive, firstly, results ensuring the convergence of the total variation measures |μ| subject to the weak* convergence of the sparsely rectifiable Radon measures μ. Secondly, we apply sparse rectifiability to derive compactness results for special functions of bounded variation (SBV)...
متن کاملMenger Curvature and Rectifiability 833
where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to be rectifiable if there exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1950
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1950-0037894-0