Density ratios and $(\phi,1)$ rectifiability in $n$-space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEST APPROXIMATION SETS IN -n-NORMED SPACE CORRESPONDING TO INTUITIONISTIC FUZZY n-NORMED LINEAR SPACE

The aim of this paper is to present the new and interesting notionof ascending family of  $alpha $−n-norms corresponding to an intuitionistic fuzzy nnormedlinear space. The notion of best aproximation sets in an  $alpha $−n-normedspace corresponding to an intuitionistic fuzzy n-normed linear space is alsodefined and several related results are obtained.

متن کامل

Uniform measures and uniform rectifiability

In this paper it is shown that if μ is an n-dimensional Ahlfors-David regular measure in R which satisfies the so-called weak constant density condition, then μ is uniformly rectifiable. This had already been proved by David and Semmes in the cases n = 1, 2 and d − 1, and it was an open problem for other values of n. The proof of this result relies on the study of the n-uniform measures in R. I...

متن کامل

Menger curvature and rectifiability

E3 c(x, y, z)dH(x)dH(y)dH(z) where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to ...

متن کامل

Sparse rectifiability and compactness in SBV

We introduce a notion of sparse rectifiability, stronger than that of uniform rectifiability. As applications we derive, firstly, results ensuring the convergence of the total variation measures |μ| subject to the weak* convergence of the sparsely rectifiable Radon measures μ. Secondly, we apply sparse rectifiability to derive compactness results for special functions of bounded variation (SBV)...

متن کامل

Menger Curvature and Rectifiability 833

where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to be rectifiable if there exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1950

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1950-0037894-0